

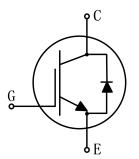
650V 30A Trench and Field Stop IGBT

JJT30N65SY

Key performance:

- $V_{\text{CE}}=650\text{V}$
- $I_{\rm C}=30{\rm A}@T_{\rm C}=100^{\circ}{\rm C}$
- $V_{\text{CE(sat)}}=1.7 \text{ V}$

Features:


- High ruggedness performance.
- 10μs short circuit capability.
- Positive $V_{\text{CE (sat)}}$ temperature coefficient.
- High efficiency for motor control.
- Excellent current sharing in parallel operation.
- RoHS compliant.

Applications:

- Home appliances
- Motor drives
- General inverter

Package parameters

Туре	Marking	Package	Packaging method
JJT30N65SY	T3065SY	TO-220	Tube

Maximum ratings

Symbol	Parameter	Values	Unit
V_{CES}	Collector-emitter voltage	650	V
$V_{ m GES}$	Gate-emitter voltage	±20	V
ī	Continuous collector current (T _C =25°C)	60	A
I_{C}	Continuous collector current (T _C =100°C)	30	A
I_{CM}	Pulsed collector current, t_p limited by T_{vjmax}	120	A
$I_{ m F}$	Diode continuous forward current (T _C =100°C)	30	A
$I_{ m FM}$	Diode maximum current, t_p limited by T_{vjmax}	80	A
$t_{ m sc}$	Short circuit withstand time	10	μs
n	Power dissipation ($T_{\rm C}$ =25°C)	187	W
$P_{ m tot}$	Power dissipation ($T_{\rm C}$ =100°C)	93	W
$T_{ m vj}$	Operating junction temperature range	-40 to +175	°C
$T_{ m stg}$	Storage temperature range	-55 to +150	°C

Thermal characteristics

Symbol		Values		T1 .*4
	Parameter	Тур.	Max.	Unit
$R_{ m th(j-c)}$	Thermal resistance, junction to case for IGBT	-	0.8	K/W
$R_{ m th(j-c)}$	Thermal resistance, junction to case for Diode	-	1.8	K/W
$R_{ m th(j-a)}$	Thermal resistance, junction to ambient	-	40	K/W

Electrical characteristics of IGBT $(T_{vj}=25^{\circ}\text{C} \text{ unless otherwise specified})$

Static characteristics

C	D	T 122	Values			TI *4
Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
$BV_{\rm CES}$	Collector-emitter breakdown voltage	$V_{\rm GE} = 0 \text{V}, I_{\rm C} = 250 \mu\text{A}$	650	-	-	V
I_{CES}	Collector-emitter leakage current	$V_{\rm CE}$ =650V, $V_{\rm GE}$ =0V	-	-	50	μΑ
I	Gate leakage current, forward	$V_{\rm GE} = 20 \text{V}, V_{\rm CE} = 0 \text{V}$	-	-	100	nA
$I_{ m GES}$ -	Gate leakage current, reverse	$V_{\rm GE}$ =-20V, $V_{\rm CE}$ =0V	-	-	-100	nA
$V_{\mathrm{GE(th)}}$	Gate-emitter threshold voltage	$V_{\text{GE}} = V_{\text{CE}}, I_{\text{C}} = 1 \text{mA}$	5.2	5.7	6.2	V
V _{CE(sat)}		$V_{\rm GE}$ =15V, $I_{\rm C}$ =30A	-	1.7	-	V
	Collector-emitter saturation voltage	$V_{\rm GE}$ =15V, $I_{\rm C}$ =30A, $T_{\rm vj}$ =175°C	-	2.2	-	V

Dynamic characteristics

Ch - l	Daniero Arri	Tr. 4 . 1'4'	Values			Unit
Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
C_{ies}	Input capacitance	$V_{\rm CE}$ =30V	-	1978	1	pF
$C_{ m oes}$	Output capacitance	$V_{ m GE}\!\!=\!\!0{ m V}$	-	100	-	pF
$C_{\rm res}$	Reverse transfer capacitance	$f=1 \mathrm{MHz}$		23	-	pF
$Q_{ m g}$	Total gate charge	V_{CC} =520V V_{GE} =15V I_{C} =30A	-	103	-	nC

Switching characteristics

6 1 1	D	TD 4 114	Values			T T •4
Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
$t_{ m d(on)}$	Turn-on delay time		-	30	-	ns
$t_{ m r}$	Rise time		-	39	-	ns
$t_{ m d(off)}$	Turn-off delay time	$V_{\rm CC}$ =400V $V_{\rm GE}$ =0/15V	-	151	-	ns
$t_{ m f}$	Fall time	$I_{C}=30A$ $R_{G}=10\Omega$	-	29	-	ns
$E_{ m on}$	Turn-on energy	Inductive load	-	0.95	-	mJ
$E_{ m off}$	Turn-off energy		-	0.60	-	mJ
$E_{ m ts}$	Total switching energy		-	1.55	-	mJ
t _{d(on)}	Turn-on delay time		-	28	-	ns
$t_{ m r}$	Rise time	$V_{\rm CC} = 400 { m V}$	-	40	-	ns
$t_{ m d(off)}$	Turn-off delay time	$V_{\rm GE} = 0/15 { m V}$	-	169	-	ns
$t_{ m f}$	Fall time	$I_{\rm C}$ =30A $R_{\rm G}$ =10 Ω Inductive load $T_{\rm vj}$ =175°C	-	71	-	ns
$E_{ m on}$	Turn-on energy		-	1.5	-	mJ
$E_{ m off}$	Turn-off energy		-	0.8	-	mJ
$E_{ m ts}$	Total switching energy		-	2.3	-	mJ

Electrical characteristics of Diode $(T_{vj}=25^{\circ}\mathbb{C} \text{ unless otherwise specified})$

Ch - l	Decreased	7D 4 1949	Values			TI!4
Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
IV.	Die de ferryand velte ce	$I_{\rm F}$ =30A	-	1.7	-	V
$V_{ m F}$	Diode forward voltage	$I_{\rm F}=30{\rm A}, T_{\rm vj}=175{}^{\circ}{\rm C}$	-	1.4	-	V
$t_{ m rr}$	Diode reverse recovery time	$V_{ m R}$ =400V	-	105	-	ns
$I_{ m rrm}$	Diode peak reverse recovery current	$I_{\rm F}$ =30A	-	16	-	A
$Q_{ m rr}$	Diode reverse recovery charge	$\mathrm{d}i_{\mathrm{F}}/\mathrm{d}t$ =-550A/ μ s	-	876	-	nC
$t_{ m rr}$	Diode reverse recovery time	V _R =400V	-	171	-	ns
$I_{ m rrm}$	Diode peak reverse recovery current	$I_{\rm F}$ =30A d $i_{\rm F}$ /d t =-550A/ μ s	-	26	-	A
$Q_{ m rr}$	Diode reverse recovery charge	$T_{ m vj}$ =175°C	-	2650	-	пC

Typical performance characteristics

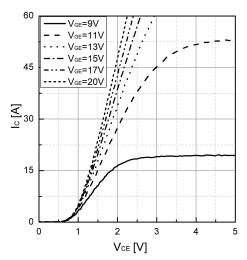


Fig 1. Typical output characteristic (T_{vj} =25°C)

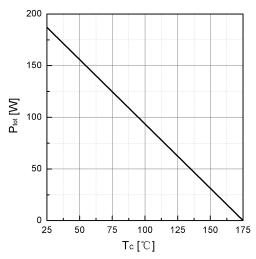


Fig 3. Power dissipation as a function of T_C

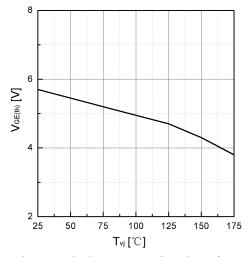


Fig 5. Typical $V_{GE(th)}$ as a function of T_{vj} ($I_C=1 \text{ mA}$)

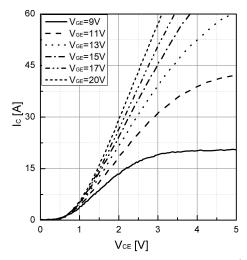


Fig 2. Typical output characteristic(T_{vj} =175°C)

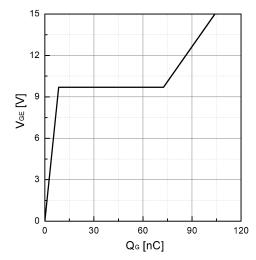


Fig 4. Typical Gate charge

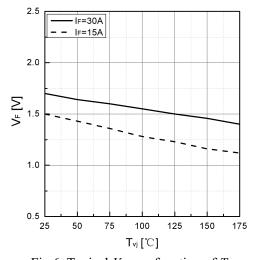


Fig 6. Typical V_F as a function of T_{vj}

Typical performance characteristics

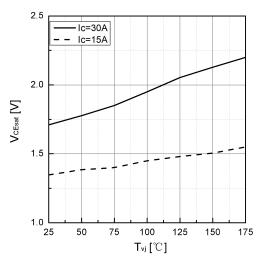


Fig 7. Typical V_{CEsat} as a function of T_{vj}

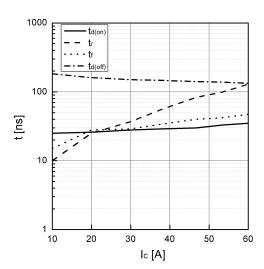


Fig 9. Typical switching time as a function of $I_{\rm C}$

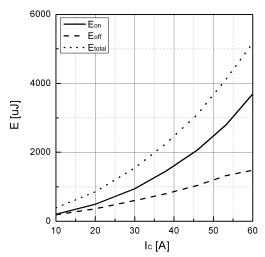


Fig 11. Typical switching energy losses as a function of $I_{\mathbb{C}}$

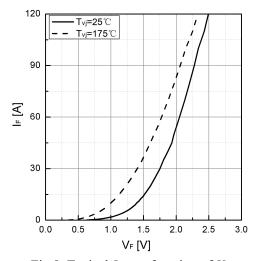


Fig 8. Typical I_F as a function of V_F

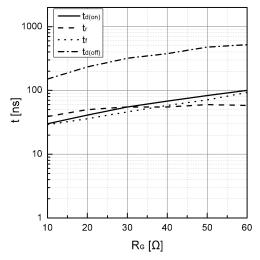


Fig 10. Typical switching times as a function of R_G

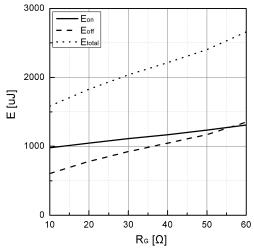


Fig 12. Typical switching energy losses as a function of R_G

Typical performance characteristics

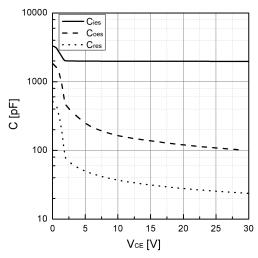
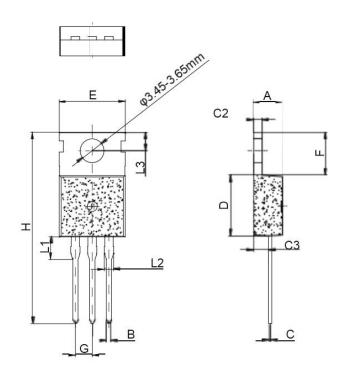



Fig 13. Typical capacitance as a function of $V_{\rm CE}$ (f=1Mhz, $V_{\rm GE}$ =0V)

Package dimension

TO-220

			Dime	ensions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
A	4.40	-	4.60	0.173	-	0.181
В	0.70		0.90	0.028		0.035
С	0.45		0.60	0.018		0.024
C2	1.23		1.32	0.048		0.052
С3	2.20		2.60	0.087		0.102
D	8.90		9.90	0.350		0.390
Е	9.90		10.3	0.390		0.406
F	6.30		6.90	0.248		0.272
G		2.54			0.100	
Н	28.0		29.8	1.102		1.173
L1		3.39			0.133	
L2	1.14		1.70	0.045		0.067
L3	2.65		2.95	0.104		0.116

Revision history

Date	Revision	Changes
2024-06-03	Rev 1.0	Release of the datasheet
2025-03-09	Rev 1.1	Character update

Disclaimer

PLEASE NOTE - Jiangsu JieJie Microelectronics Co., Ltd ("JJM") reserves the right to amend, correct, modify and enhance the product and/or this document at any time without prior notice. If you intend to purchase this product, please obtain the latest information available before placing your order. The sale of JJM products is governed by JJM's prevailing terms and conditions at the time of purchase and purchasers are solely responsible for the selection and use of the products with no liability on JJM's part to supply application assistance or customization. Purchase of JJM products does not grant the purchaser license, express or implied, to JJM's intellectual property. Any warranties provided with JJM products are null and void upon resale unless accompanied by the information set forth herein in its entirety. The JJM name and logo are registered trademarks of Jiangsu JieJie Microelectronics Co., Ltd. This document supersedes all previous versions. ©2025 JJM - All rights reserved